Technologieën voor het bewerken van genen in combinatie met virale vectoren voor translationeel onderzoek naar neurodegeneratieve ziekten
Ziekten van het centrale zenuwstelsel (CZS) behoren van oudsher tot de moeilijkst te behandelen met conventionele farmacologische benaderingen . Dit is te wijten aan een samenloop van factoren, waaronder het beperkte regeneratieve vermogen en de algehele complexiteit van de hersenen, problemen die samenhangen met herhaalde toediening van geneesmiddelen en moeilijkheden bij het afleveren van geneesmiddelen door de bloed-hersenbarrière (BBB). Viraal gemedieerde genoverdracht vormt een aantrekkelijk alternatief voor de levering van therapeutische lading aan het zenuwstelsel. Cruciaal is dat het meestal slechts een enkele injectie vereist, of dat nu een genvervangingsstrategie is voor een erfelijke aandoening of de levering van een genoom- of epigenoommodificerend assemble voor de behandeling van ziekten en aandoeningen van het CZS.
Het is dus begrijpelijk dat er aanzienlijke inspanningen zijn geleverd voor de ontwikkeling van verbeterde vectorsystemen voor genoverdracht naar het CZS. Verschillende virale vectoren zijn natuurlijk afgestemd op hun specifieke toepassingen, maar over het algemeen zouden ze verschillende belangrijke eigenschappen moeten delen . De ideale virale vector omvat een hoge verpakkingscapaciteit, efficiënte genoverdracht gecombineerd met robuuste en aanhoudende expressie, gebrek aan oncogeniteit, toxiciteit en pathogeniteit, en schaalbare productie voor klinische toepassingen. In deze evaluate zullen we aandacht besteden aan virale vectoren die zijn afgeleid van humaan immunodeficiëntievirus sort 1 (lentivirale vectoren; LV’s) en adeno-geassocieerd virus (AAV’s).
De grote belangstelling voor deze vectoren voor virale afgiftesystemen is te wijten aan: (i) robuuste afgifte en langdurige expressie; (ii) efficiënte transductie in postmitotische cellen, inclusief de hersenen; (iii) lage immunogeniciteit en toxiciteit; en (iv) compatibiliteit met geavanceerde fabricagetechnieken. Hier zullen we basisaspecten van LV- en AAV-biologie schetsen, met title gericht op benaderingen en technieken die gericht zijn op het verbeteren van de virale veiligheid.
We zullen ook een aanzienlijk deel van deze beoordeling toewijzen aan de ontwikkeling en het gebruik van LV’s en AAV’s voor levering aan het CZS, met een focus op de genoom- en epigenoombewerkingstools op foundation van geclusterde, regelmatig op afstand staande korte palindroomherhalingen/CRISPR-geassocieerd eiwit. (CRISPR/Cas 9) en de ontwikkeling van nieuwe strategieën voor de behandeling van neurodegeneratieve ziekten (NDD’s).
Methoden in moleculaire cardiologie: analyse van DHPLC- mutatiedetectie.
Er zijn steeds meer mutaties geïdentificeerd in genen die betrokken zijn bij hartaandoeningen, wat heeft geleid tot nieuwe inzichten in de pathofysiologie van erfelijke hartziekten. Als gevolg van deze bevindingen worden technieken die gespecialiseerd zijn in geautomatiseerde high-throughput-analyse geïmplementeerd om het toenemende aantal diagnostische genetische verzoeken aan te kunnen.
Denaturerende hogedrukvloeistofchromatografie (DHPLC) is zo’n nieuwe techniek die voldoet aan de standards van snelheid, gevoeligheid en nauwkeurigheid. Dit nummer concentreert zich op het basisprincipe van de techniek en illustreert hoe genetische veranderingen kunnen worden geïdentificeerd.
DHPLC- technologie voor high-throughput detectie van mutaties in een durumtarwe TILLING-populatie
ACHTERGROND
Durumtarwe (Triticum turgidum L.) is een graangewas dat veel wordt verbouwd in de mediterrane regio’s; de amberkleurige korrel wordt voornamelijk gebruikt voor de productie van pasta, couscous en typische broden. Single nucleotide polymorphism (SNP) detectietechnologieën en high-throughput mutatie-inductie vormen een nieuwe uitdaging in de tarweveredeling om allelische variatie in grote populaties te identificeren.
De TILLING-strategie maakt gebruik van traditionele chemische mutagenese gevolgd door screening op mismatches van enkele basen om nieuwe mutante loci te identificeren. Hoewel TILLING is gecombineerd met verschillende gevoelige pre-screeningmethoden voor SNP-analyse, vertrouwen de meeste op dure apparatuur. Onlangs is een nieuw goedkoop en tijdbesparend DHPLC- protocol gebruikt in de moleculaire menselijke diagnostiek om onbekende mutaties te detecteren.
RESULTATEN
In dit werk hebben we een nieuwe TILLING-populatie van durumtarwe ontwikkeld (cv. Marco Aurelio) met 0,70-0,85% ethylmethaansulfonaat (EMS). Om de efficiëntie van de mutagene behandelingen te onderzoeken, werd een pilotscreening uitgevoerd op 1.140 mutantlijnen die zich richtten op twee doelwitgenen (Lycopeen-epsilon-cyclase, -LCY en Lycopeen-bèta-cyclase , β-LCY) die betrokken zijn bij het carotenoïdemetabolisme in tarwe granen.
We vereenvoudigen de heteroduplexdetectie met twee goedkope methoden: de enzymatische splitsing (CelI)/agarosegeltechniek en de denaturerende hogedrukvloeistofchromatografie (DHPLC) . Met de CelI/agarose-gelbenadering konden we 31 mutaties identificeren, terwijl de DHPLC-procedure in totaal 46 mutaties voor beide genen detecteerde.
Alle gedetecteerde mutaties werden bevestigd door directe sequencing. De geschatte totale mutatiefrequentie voor de pilot-assay volgens de DHPLC- methodologie was 1/77 kb, wat een hoge waarschijnlijkheid vertegenwoordigt om interessante mutaties in de doelgenen te detecteren.
CONCLUSIES
We hebben de toepasbaarheid en efficiëntie aangetoond van een nieuwe strategie voor de detectie van geïnduceerde variabiliteit. We hebben een nieuwe TILLING-populatie van durumtarwe geproduceerd en gekarakteriseerd die nuttig is voor een beter begrip van de belangrijkste genfuncties. De beschikbaarheid van deze software samen met de TILLING- techniek zal de polymorfismen in kandidaatgenen van agronomisch belangrijke eigenschappen in tarwe uitbreiden.
Matched Pair - cDNA - Human Primary Tumor and Normal Tissue: Kidney
Description: Kidney tissue lysate was prepared by homogenization in modified RIPA buffer (150 mM sodium chloride, 50 mM Tris-HCl, pH 7.4, 1 mM ethylenediaminetetraacetic acid, 1 mM phenylmethylsulfonyl fluoride, 1% Triton X-100, 1% sodium deoxycholic acid, 0.1% sodium dodecylsulfate, 5 μg/ml of aprotinin, 5 μg/ml of leupeptin. Tissue and cell debris was removed by centrifugation. Protein concentration was determined with Bio-Rad protein assay. The product was boiled for 5 min in 1 x SDS sample buffer (50 mM Tris-HCl pH 6.8, 12.5% glycerol, 1% sodium dodecylsulfate, 0.01% bromophenol blue) containing 5% β-mercaptoethanol.
Description: Kidney tissue lysate was prepared by homogenization in modified RIPA buffer (150 mM sodium chloride, 50 mM Tris-HCl, pH 7.4, 1 mM ethylenediaminetetraacetic acid, 1 mM phenylmethylsulfonyl fluoride, 1% Triton X-100, 1% sodium deoxycholic acid, 0.1% sodium dodecylsulfate, 5 μg/ml of aprotinin, 5 μg/ml of leupeptin. Tissue and cell debris was removed by centrifugation. Protein concentration was determined with Bio-Rad protein assay. The product was boiled for 5 min in 1 x SDS sample buffer (50 mM Tris-HCl pH 6.8, 12.5% glycerol, 1% sodium dodecylsulfate, 0.01% bromophenol blue) containing 5% β-mercaptoethanol.
Description: Kidney tissue lysate was prepared by homogenization in modified RIPA buffer (150 mM sodium chloride, 50 mM Tris-HCl, pH 7.4, 1 mM ethylenediaminetetraacetic acid, 1 mM phenylmethylsulfonyl fluoride, 1% Triton X-100, 1% sodium deoxycholic acid, 0.1% sodium dodecylsulfate, 5 μg/ml of aprotinin, 5 μg/ml of leupeptin. Tissue and cell debris was removed by centrifugation. Protein concentration was determined with Bio-Rad protein assay. The product was boiled for 5 min in 1 x SDS sample buffer (50 mM Tris-HCl pH 6.8, 12.5% glycerol, 1% sodium dodecylsulfate, 0.01% bromophenol blue) containing 5% β-mercaptoethanol.
Description: Kidney tissue lysate was prepared by homogenization in modified RIPA buffer (150 mM sodium chloride, 50 mM Tris-HCl, pH 7.4, 1 mM ethylenediaminetetraacetic acid, 1 mM phenylmethylsulfonyl fluoride, 1% Triton X-100, 1% sodium deoxycholic acid, 0.1% sodium dodecylsulfate, 5 μg/ml of aprotinin, 5 μg/ml of leupeptin. Tissue and cell debris was removed by centrifugation. Protein concentration was determined with Bio-Rad protein assay. The product was boiled for 5 min in 1 x SDS sample buffer (50 mM Tris-HCl pH 6.8, 12.5% glycerol, 1% sodium dodecylsulfate, 0.01% bromophenol blue) containing 5% β-mercaptoethanol.
Description: Kidney cancer tissue array with adjacent normal kidney tissue, including TNM, clinical stage and pathology grade, 72 cases/72 cores, replacing BC07015a
Description: Kidney cancer tissue array with matched adjacent normal kidney tissue, including TNM, clinical stage and pathology grade, 40 cases/90 cores, replacing KD901
Tissue cDNA, First Strand, Monkey (Cynomolgus) Adult Normal, Kidney, BioGenomics
Description: Adjacent normal kidney tissue and cancer tissue array, including pathology grade, TNM and clinical stage, 20 cases/54 cores, replacing BN07011
Kidney cancer (grade I) tissue array with matched adjacent normal kidney tissue
Description: Kidney cancer (grade I) tissue array with matched adjacent normal kidney tissue, including TNM, clinical stage and pathology grade, 35 cases/70 cores, replacing KD701
FFPE Total RNA - Human Adult Normal Tissue: Kidney
Description: Kidney cancer tissue array with matched adjacent normal tissue, including TNM, clinical stage and pathology ISUP grade, 16 cases/32 cores, replacing KD321
Kidney cancer with matched adjacent normal kidney tissue array
Description: Kidney cancer tissue array with matched normal adjacent or caner adjacent kidney tissue, including TNM, ISUP grade and survival data, 30 cases/60 cores
Description: Our tissue products are produced by strictly following the IRB ethical standards and procedures and from highest quality tissues. Immediately after collection the tissues are placed in liquid nitrogen and examined by certified pathologists. The thickness of each individual section is ~5um. They are Hematoxylin and Eosin stained and quality tested by immunostaining with anti-beta-actin antibodies. Our tissue products are suitable for various studies on cellular level (RNA localization, Protein expression, etc.) on both normal and pathological cases. It is also an excellent control and educational tool.
Tissue, Section, Human Adult Normal, Kidney (Paraffin)
Een efficiënte virus -geïnduceerde genuitschakeling (VIGS) voor useful genomics in Brassica by way of een kool leaf curl virus (CaLCuV) -gebaseerde vector
Op CaLCuV gebaseerde VIGS werkt effectief in kool en draagt bij aan efficiënt functioneel genomics-onderzoek in Brassica-gewassen. Virus-geïnduceerde gene silencing (VIGS), een posttranscriptionele gene silencing methode, is een effectieve techniek voor het analyseren van de functies van genen in planten. Tot nu toe waren er echter geen VIGS-vectoren beschikbaar voor Brassica oleracea.
Hier werden tabaksratelvirus (TRV), pTY’s en koolbladkrulvirus (CaLCuV) genuitschakelingsvectoren (PCVA/PCVB) gekozen om het VIGS-systeem in kool te verbeteren met behulp van het fytoeendesaturase (PDS)-gen als een efficiënte visuele indicator van VIGS. We hebben met succes de expressie van PDS tot zwijgen gebracht en hebben fotobleekverschijnselen waargenomen in kool als reactie op pTY’s en CaLCuV, waarbij de laatste eenvoudiger te bedienen en goedkoper is.
De parameters die mogelijk de silencing-efficiëntie van VIGS door CaLCuV in kool beïnvloeden, inclusief de targeting- fragmentstrategie, inoculatiemethode en incubatietemperatuur , werden vervolgens vergeleken. Het geoptimaliseerde op CaLCuV gebaseerde VIGS-systeem omvat het volgende: een insertiesequentie van ongeveer 500 bp, een Agrobacterium OD 600 van 1,0, gebruik van de vacuümosmosemethode toegepast in het kiemstadium en een incubatietemperatuur van 22 °C.
Met behulp van deze parameters hebben we een stabiel dempingsrendement van 65% bereikt. Om de effectiviteit van het systeem verder te testen, selecteerden we het Mg-chelatase H-subeenheid (ChlH) -gen in kool en schakelden de expressie ervan uit, en we observeerden gele bladeren , zoals verwacht. We hebben het op CaLCuV gebaseerde VIGS-systeem met succes toegepast op twee andere representatieve Brassica-gewassen, B. rapa en B. nigra, en hebben zo het toepassingsgebied van dit systeem uitgebreid. Ons hier beschreven VIGS-systeem zal bijdragen aan efficiënt functioneel genomics-onderzoek in Brassica-gewassoorten.
Oculaire Gentherapie met adeno-geassocieerde virus vectoren : Actueel Outlook voor patiënten en onderzoekers
In dit “Perspectief” bespreken we oculaire gentherapie – het perspectief van de patiënt, de verschillende strategieën van genvervanging en genbewerking, de plaats van adeno-geassocieerde virusvectoren, routes van levering aan het oog en de resterende vraag – “waarom werkt immuniteit werkzaamheid blijven beperken?” Door de gecoördineerde inspanningen van patiënten, onderzoekers, subsidieverlenende instanties en de industrie, en na vele jaren van preklinische research, biochemische, cellulaire en diermodellen, zien we klinische proeven ontstaan voor veel voorheen onbehandelbare erfelijke oculaire aandoeningen.
De weg naar therapieën werd geleid door de succesvolle behandeling van de RPE65 vorm van Leber congenitale amaurose met LUXTURNA TM . In sommige gevallen blijven immuunreacties op de vectoren optreden, waardoor de werkzaamheid wordt beperkt. De onderliggende ontstekingsmechanismen vereisen verder onderzoek en er moeten nieuwe vectoren worden ontworpen die de triggers van immuniteit beperken .
Onderzoekers die oculaire gentherapieën bestuderen en clinici die patiënten inschrijven voor klinische onderzoeken, moeten de huidige beperkingen van deze therapieën erkennen om de verwachtingen goed te managen en teleurstelling te voorkomen, maar we zijn van mening dat gentherapieën goed op weg zijn naar succesvol, wijdverbreid gebruik voor de behandeling van erfelijke oculaire aandoeningen.
Description: A sandwich ELISA for quantitative measurement of Mouse Podoplanin in samples from blood, plasma, serum, cell culture supernatant and other biological fluids. This is a high quality ELISA kit developped for optimal performance with samples from the particular species.
Description: A sandwich ELISA for quantitative measurement of Mouse Podoplanin in samples from blood, plasma, serum, cell culture supernatant and other biological fluids. This is a high quality ELISA kit developped for optimal performance with samples from the particular species.
Description: A sandwich ELISA for quantitative measurement of Mouse Podoplanin in samples from blood, plasma, serum, cell culture supernatant and other biological fluids. This is a high quality ELISA kit developped for optimal performance with samples from the particular species.
Description: Podoplanin, also known as glycoprotein 38 (gp38), PA2.26 antigen, T1alpha (T1A), and aggrus, is a 38 kDa type I transmembrane sialoglycoprotein and member of the podoplanin family. Podoplanin is synthesized as a 172 amino acid (aa) precursor with a 22 aa signal sequence, a 119 aa extracellular domain (ECD), a 21 aa transmembrane region, and a short, 10 aa cytoplasmic tail. The ECD contains abundant Ser/Thr residues as potential sites for Oglycosylation, and the cytoplasmic region contains putative sites for kinase C and cAMP phosphorylation. Mouse Podoplanin shares 77% and 46% aa sequence identity with rat and human Podoplanin, respectively. Podoplanin is expressed on glomerular epithelial cells (podocytes), type I lung alveolar cells, lymphatic endothelial cells, and on numerous tumors including colorectal tumors, squamous cell carcinomas, testicular seminoma, and brain tumors. One study shows high expression of Podoplanin mRNA in placenta, lung, skeletal muscle, and heart, and weaker levels in brain, kidney, and liver. Podoplanin is the ligand for Ctype lectin like receptor 2 (CLEC2). Their association is dependent on sialic acid on Oglycans of Podoplanin. Through its association with CLEC2, Podoplanin induces platelet aggregation and tumor metastasis. Podoplanin is also necessary for lymphatic vessel formation, normal lung cell proliferation and alveolus formation at birth.
Description: Podoplanin, also known as glycoprotein 38 (gp38), PA2.26 antigen, T1alpha (T1A), and aggrus, is a 38 kDa type I transmembrane sialoglycoprotein and member of the podoplanin family. Podoplanin is synthesized as a 172 amino acid (aa) precursor with a 22 aa signal sequence, a 119 aa extracellular domain (ECD), a 21 aa transmembrane region, and a short, 10 aa cytoplasmic tail. The ECD contains abundant Ser/Thr residues as potential sites for Oglycosylation, and the cytoplasmic region contains putative sites for kinase C and cAMP phosphorylation. Mouse Podoplanin shares 77% and 46% aa sequence identity with rat and human Podoplanin, respectively. Podoplanin is expressed on glomerular epithelial cells (podocytes), type I lung alveolar cells, lymphatic endothelial cells, and on numerous tumors including colorectal tumors, squamous cell carcinomas, testicular seminoma, and brain tumors. One study shows high expression of Podoplanin mRNA in placenta, lung, skeletal muscle, and heart, and weaker levels in brain, kidney, and liver. Podoplanin is the ligand for Ctype lectin like receptor 2 (CLEC2). Their association is dependent on sialic acid on Oglycans of Podoplanin. Podoplanin is also necessary for lymphatic vessel formation, normal lung cell proliferation and alveolus formation at birth.
Description: Podoplanin, also known as glycoprotein 38 (gp38), PA2.26 antigen, T1alpha (T1A), and aggrus, is a 38 kDa type I transmembrane sialoglycoprotein and member of the podoplanin family. Podoplanin is synthesized as a 172 amino acid (aa) precursor with a 22 aa signal sequence, a 119 aa extracellular domain (ECD), a 21 aa transmembrane region, and a short, 10 aa cytoplasmic tail. The ECD contains abundant Ser/Thr residues as potential sites for Oglycosylation, and the cytoplasmic region contains putative sites for kinase C and cAMP phosphorylation. Mouse Podoplanin shares 77% and 46% aa sequence identity with rat and human Podoplanin, respectively. Podoplanin is expressed on glomerular epithelial cells (podocytes), type I lung alveolar cells, lymphatic endothelial cells, and on numerous tumors including colorectal tumors, squamous cell carcinomas, testicular seminoma, and brain tumors. One study shows high expression of Podoplanin mRNA in placenta, lung, skeletal muscle, and heart, and weaker levels in brain, kidney, and liver. Podoplanin is the ligand for Ctype lectin like receptor 2 (CLEC2). Their association is dependent on sialic acid on Oglycans of Podoplanin. Podoplanin is also necessary for lymphatic vessel formation, normal lung cell proliferation and alveolus formation at birth.
Description: A sandwich quantitative ELISA assay kit for detection of Mouse Podoplanin (PDPN) in samples from tissue homogenates, cell lysates or other biological fluids.
Description: A sandwich quantitative ELISA assay kit for detection of Mouse Podoplanin (PDPN) in samples from tissue homogenates, cell lysates or other biological fluids.
Description: This is Double-antibody Sandwich Enzyme-linked immunosorbent assay for detection of Mouse Podoplanin (PDPN) in tissue homogenates, cell lysates and other biological fluids.
Description: This is Double-antibody Sandwich Enzyme-linked immunosorbent assay for detection of Mouse Podoplanin (PDPN) in tissue homogenates, cell lysates and other biological fluids.
Description: This is Double-antibody Sandwich Enzyme-linked immunosorbent assay for detection of Mouse Podoplanin (PDPN) in tissue homogenates, cell lysates and other biological fluids.
Description: This is Double-antibody Sandwich Enzyme-linked immunosorbent assay for detection of Mouse Podoplanin (PDPN) in tissue homogenates, cell lysates and other biological fluids.
Description: Enzyme-linked immunosorbent assay based on the Double-antibody Sandwich method for detection of Mouse Podoplanin (PDPN) in samples from tissue homogenates, cell lysates and other biological fluids with no significant corss-reactivity with analogues from other species.